 
[bookmark: _Hlk33714886][bookmark: _GoBack]On the positive solution of the Collatz problem

Math enthusiasts have always loved this kind of number theory problem. The problem itself is simple. However, the proof is difficult. The Collatz problem is another known problem and has not been solved yet.
"Hitotsumatsu Shin" is a famous mathematician in Japan. He  was writing in the Asahi Shimbun's "The Dangerous Mathematics (published in 1995)" about the Collatz problem.

<Contents of cited references>
Takes any positive integer n. If n is odd, multiply by 3 and add 1 (make 3n + 1). If n is even, divide by 2. If you repeat this, someday you will end up with a loop of 1 → 4 → 2 → 1.
This is the subject of the title. Collatz is a famous German applied mathematician. He attended an international conference in Japan at the age of eighty (1990) and gave a lively lecture, but died on his return home in Bulgaria.

In Japan, it was previously called "Kakutani's conjecture."It was the name of the professor Shizuo Kakutani (Yale University) who introduced this problem to Japan, but it is no longer used because of improper naming.

When I asked Prof. Nobuo Yoneda (formerly The University of Tokyo) who had been working on this problem for many years on a computer, he said he had confirmed that he had correct up to 4 trillion n. With patience, we can go further. However, the right proof has not been made. This also seems simple, and is an example of a very difficult problem. <End of quote>

I'm also a math fan on this subject I started researching. I was attracted to this naive problem and began to think about ways to solve it.
A few years later, I realized that the way numbers are created by this problem has beautiful rules of how numbers are arranged. This is a good property that can be obtained when positive integers are divided into six groups {6m + 0,1,2,3,4,5}. One of them was the fact that all even numbers created by (3n + 1) belong to (6m + 4). Furthermore, I discovered that 2n exists infinitely in the same (6m + 4), so it always becomes 1.

I was surprised at the Collatz problem, feeling so structurally beautiful. Even if the positive integer n becomes infinitely large, the relation does not change, so it could be proved. I came to think so. 
However, research is not easy. Even after some discoveries, they were unable to resolve. It is difficult to prove that there is no loop other than 1 → 4 → 2 → 1 in the sequence created by the Collatz problem. 
Furthermore, it was difficult to prove that the sequence did not diverge. In my case, I asked a mathematician I knew to find a solution. In each case, they pointed out mistakes and deepened their research while changing them to correct ideas. It has been 15 years since the day passed and I started my research.

A paper "Positive solution of Collatz problem", which was created in 2011, was presented at the Mathematical Society of Japan. Based on this, the paper was electronically published by Amazon Kindle with some modifications. I decided to publish my 2016 thesis, though it was incomplete. I wanted many people to see my papers, correct them, and hope that they would complete them.

Five years have passed since I published my first paper. At this stage, only small words have been modified without significant modification of the proof. For this reason, I decided to publish my achievements up to this point as "My research achievements toward a positive solution to the Collatz problem".　

July 21, 2016
Author: Koichi Muneta
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Abstract

"Choose a positive integer n and divide it by 2 if it's even. If the number you're choosing is odd, add 1 to the tripled number. Repeat this process in the same way. Ultimately, any number you choose will be 1. "

First, to consider a solution to this Collatz problem, positive integers n are grouped into Mod 6. Next, after defining the functions f and g, an examination is made as to which set includes the number of results when the functions are performed.

Then the functions f and g confirm that the Collatz sequence always circulates in the set G4. Eventually, we reach 2k (k∈N) included in the same set G4 (including G2).

Therefore, the Collatz problem is considered to be proved positively when the properties of the functions f and g can show that there is no circulation that returns to the same number again without diverging the Collatz sequence.

This shows why Collatz sequences containing the set G4 = {4, 10, 16, 22, 28,…, 6m + 4,…} do not diverge. In addition, I will prove why there is no circular loop in this sequence, and show that no matter what number you choose, the sequence will eventually become 1.

Key words ;  Mod 6, Collatz数列, G4, gf, gf2, f2, 2k



______________________________________________________＿＿＿＿＿＿＿＿

Consider Collatz problem with Mod 6
______________________________________________________＿＿＿＿＿＿＿＿


§1　Symbol definitions and grouping of positive integers into Mod 6

Let the set of all positive integers be "N" and its elements be "n". Let “Ne” and “No” be the set of all even numbers and the set of all odd numbers in ”N”, respectively.

[bookmark: _Hlk34039438]Definition 1.1
A positive integer N is divided into the following six sets by m∈N as follows:
G0 = { 6m+0 },  G1 = { 6m+1 },
G2 = { 6m+2 },  G3 = { 6m+3 },
G4 = { 6m+4 },  G5 = { 6m+5 },
defined as above. ■


§2　On the definition of the function "f, g" and the number after the operation

[bookmark: _Hlk34040048]Definition 2.1　 The function “f” for even numbers and the function “g” for odd numbers are:
f(2m)=m
g(2m+1)=3(2m+1)+1=6m+4

Is determined. A sequence of numbers created by the operation of these two functions is called a “Collatz sequence”.
C={ c1, c2, c3, c4,…, cn,…}
I will write it as shown above. ■

Definition 2.2　 When the function "g" is performed after the function "f", it is described as a composite function such as "gf". When the operation of “f” is performed twice, it is written as “f2”. Further, when the function “g” is performed again, it is described as “gf2”. ■

By definition, when examining a set containing numbers created by the operation of the function f, the following lemma holds.

Lemma 2.3　 For the function f given in Definition 2.1,

(1) 　　 f(G0) = G0 G3
(2) 　　 f(G2) = G1 G4
(3) 　　 f(G4 )= G2 G5
 they hold. 

Proof: It is obvious from Definition 1.1 and Definition 2.1. □


When examining a set containing numbers created by the operation of the function g, the following lemma holds.

Lemma 2.4　 The next relation
g(No)= { g(2m+1)|mN } = G4
they hold. 

Proof: This is self-evident from the definition of the function g, 2.1. □

When examining the set of numbers formed by the operation of the combination functions f and g, the following lemmas hold.
  
Lemma 2.5　 For any n∈N, k, l ∈ N can be made appropriately as follows.
n = (2l+1)2k
we can write that way. At this time,

gfk(n) = g(2l+1)G4
that holds.

Proof: The first half is clear by factoring n, and the second half is clear by Lemma 2.4 and the definition 2.1 of functions f and g. □


The next lemma 2.6 is an important property of the set G4, which is the key to solving the "Collatz problem".

From the results of Lemma 2.3 to 2.5, there are only three combinations of composite functions shown in Lemma 2.6. This is a very important result.

The Collatz sequences were considered to be an irregular number of columns.
From this result, a regular set,
G4 = {4, 10, 16, 22, 28,…, 6m + 4,…｝.
We can go through the above set and see that Well-ordered the sequence is composed.


Lemma 2.6  If n∈G4 is given, it will be one according to this “n” by the composition function.
gf (n)∈G4,  gf2 (n)∈G4,  f2 (n)∈G4.
Further, any one of the operations makes the number n∈G4, and this is repeated to form the Collatz sequence C.

Proof: From lemmas 2.3 and 2.4, when n∈N,
gf(n)G4 ⇒　gf2(n)G4 .
This is self-evident. Also from Lemma 2.3,

f2(n)G1G4 .

The above equation is obtained. For G1,

f2(n)G1 ⇒　gf2(n) G4 .
Therefore, after the operation of the three types of composite functions, all of them become numbers in G4. So, whatever you choose first, it will again be in G4.
C = {c1, c2, c3, ,cｎ,…}G4 .
The Collatz sequence C is formed as above. □


Next, let's verify that 2k is included in the set G4 = {4,10,16,22,28, ..., 6m + 4, ...}.

Lemma 2.7  n∈N,
22n－1 G2,  22n G4 .
Holds.

Proof: Proving with mathematical induction,
n=1 ⇒ 22n－1 = 2G2
Holds. Further, assuming that it is correct when n, there is a certain m∈N, so that:
22n－1+2 = 22n－1・4 = (6m+2)・4 = 6(4m+1)+2G2 .
Therefore, it turned out to be correct at the time of n + 1. Also,
n=1 ⇒ 22n = 4G4 .

Holds true when n = 1. Also, assuming that when n is correct, since there exists a certain m∈N and 2n = 6m + 4 holds, when n+1
22(n+1) = 22n・22 = (6m+4)・22 = 6(4m+2)+4G4

Is obtained, and is also correct when n+1. □


Lemma 2.8  For any k∈N, when n = 2k ,
fk(n) = fk(2k) =1
Holds.


Proof: It is obvious from the definition of the function f. □

The result of Lemma 2.7 confirmed that 2k is completely contained in G4 and G2. For this purpose, it is only necessary to examine the properties of the set G4 from the results of Lemma 2.6 and 2.8.


After all, this Collatz problem was "whether the sequence C formed by the set G4 becomes 1 by the number 2k in the same G4 without diverging". This has been shown.

In other words, "When it is confirmed that there is no divergence in the Collatz sequence created by the operation of the two functions g and f, and that there is no circular loop other than 1 → 4 → 2 → 1, the Collatz sequence becomes 1 Will be shown. "

To summarize what we have learned so far, the sequence C due to the Collatz problem seems to be an irregular sequence of numbers, but in fact the set
G4＝{4,10,16,22,28,…,6m+4,…}.
It has been shown that the sequence is a regular sequence made up of only three composite functions.

Moreover, the set G4 includes all 2k numbers together with G2. With that in mind, we need rigorous proof that the sequence does not diverge and that no cycles occur. In order to give a clue to the consideration, "m column display" is introduced as follows.


§3　 About "m-column display" of set G4

When G4 = {4,10,16,22,28,…, 6m + 4,… }, let each element correspond to a natural number starting from 0,
m = {0,1,2,3,4,5,…, n,… }
and put it.
That is, the element “4” of G4 corresponds to m = 0, and “10” corresponds to m = 1.
G4,0=4,  G4,1=10,  G4,2=16,  … ,　G4,m=6m+4,  …
display uniquely as shown above.

The elements of G4 change numbers by the composite functions gf, gf2, and f2 as shown in the following lemma 3.1.

Lemma 3.1  Given an arbitrary number n> 0,

(1) In the case of gf, m = 2n-1 becomes m = 3n-1
　(2)　　　In the case of gf2, m = 4n becomes m = 3n 
　(3)　　　In the case of f2, m = 4n−2 becomes m = n−1 

it changes as above.

Proof:  Self-evident from definitions 2.1 and 2.2. □

[bookmark: _Hlk34138629]In case of gf "m-columns display"　

[bookmark: _Hlk34139926]Let's look at the "m-column display" that changes with "gf" in the number of G4 that change like G4⇒G5⇒G4.  As a display convention, write (1,2) when m = 1 column becomes m = 2 column. Then, looking at the actual column change for G4 . 

(1,2)
(3,5)
(5,8)
(7,11)
(9,14)
(11,17)
(13,20)
(15,23)
( …, … )
(2n－1, 3n－1)
( … , … ).
In case of gf2 "m-columns display"　

Next, let us look at the “m-column display” that changes with gf2 in the number of G4
that change as G4 → G2 → G1 → G4. Similarly, in the promise of labeling. Similarly, in the promise of labeling,

(4,3)
(8,6)
(12,9)
(16,12)
(20,15)
(24,18)
(28,21)
(32,24)
( … , … )
(4n,3n)
( … , … ).
In case of f2 "m-columns display"　
　
Next, let's look at the “m-column display” that changes with f2 in the number of G4 that change as G4⇒G2⇒G4. If you use the same promises as in the previous statement,

(2,0)
(6,1)
(10,2)
(14,3)
(18,4)
(22,5)
(26,6)
(30,7)
( … , … )
(4n－2, n－1)
( …, … ).
From these results,

(3.1) In the case of f2, all “m columns display” after the change is taken, and in the case of gf2, all “m-columns display” corresponding to “3n” after the change are taken. Furthermore, in the case of gf, all “m-columns” corresponding to “3n−1” after the change are taken.

(3.2) In the case of gf2, after the change is 3n, and in the case of gf, the change is “3n−1”. Therefore, two composite functions including the function of “g” do not have the same number after the operation.
This is an important result. That is, it was shown that the number of G4 in the Collatz sequence created by the operation of the function g does not become the same as a result.

According to these results, the Collatz sequence has no circulation other than 
1 → 4 → 2 → 1 and does not diverge due to 2k existing in the sets G4 and G2. This is shown.


§4　　What the "m-column display" results indicate

In order for a certain number n to circulate and become the same number, it is necessary that two kinds of composite functions, gf or gf2, make the same number after the operation.

However, the same G4 number does not occur due to the composite function (results from 3.1 to 3.4). This indicates that no circulation can occur, no matter how large the number, because the same number is not generated by the two types of composite functions g required for circulation.

Let "gn" be the number of G4 created by the composite function containing “g”. Then, from the result of “§3”,
g1 ≠g2 ≠g3 ≠… ≠gn .

Above result. However, if the number in G4 has a cycle that returns to the same number like a⇒a, then g1 = gn, so
g1 = g2 = g3 = … = gn .
The above result is obtained.
In general, just because g1 = gn does not simply mean that g1 = g2 = g3 =… = gn.

However, it can be understood from the result of “§3” by the m-column display that such a circulation does not occur.

On the other hand, consider that it does not diverge. After the given number “a” becomes the number of G4, the number of G4 is repeated with three composite function patterns. That is why 2k is inevitably included in the Collatz sequence.

For this reason, since the Collatz sequence cannot be constructed without passing through 2k at all, the result converges to "1".

Let's show another way that the same result is obtained. In order to show that there is no circulation and divergence, a new set of Ps and Qs is defined in §5, and the consideration that circulation does not occur from another angle is deepened.


§5　New preparation and definition to show that the Collatz sequence has no cycles 

Another way to indicate that there is no more circulation. Using the results derived so far, we define a new set.

Definition 5.1  In the sequence C, after a, for the sequence C that has become a∈G4 by ｛gf, gf2, f2｝,
Ps = No
Qs = Ne
define as such. ■

Definition 5.2  (Ps ← Qs) When written, “Ps” represents a specific odd number, “←” represents fn (n> 0), and “Qs” is an even number created by the inverse function of f Shall be represented. This combination of (Ps ← Qs) is called a “Ps set”. ■

At this time, since Ps does not have the same number, the same number does not exist in the infinitely long Qs sequence.

One Qs corresponding to one Ps has infinite elements from the definition.

P1, P2, P3, P4, …,  Ps, …

Looking at the above, there is no same number of Ps that G1∪G3∪G5, and Ps exists infinitely.

[Ex. 5.3] As an example, when an odd number of 7 is assigned to Ps of (Ps ← Qs), Qs also corresponds to it.

(7 ← Qs) ={ 7, 14, 28, 56, 112, 224, 448, …, Qs, … }

Write as above, and let Qs write the number formed by f-1 in order. The elements a∈G0∪G2∪G4 of the Qs number created at this time exist indefinitely for one odd Ps.

At this time, it is referred to as “set of Ps = 7”.  Actually,

(7) ← 14,　← 28,　← 56,　← 112,　← 224, …, Qs,　← …

It should be written like that, but it should be symbolized and written simply as (7 ← Qs). Then the following lemmas 5.4 and 5.5 hold.

Lemma 5.4  The number of Ps sets is given by the following (1) to (3).

(1)  (P1 ←Q1) ≠(P2 ←Q2) ≠(P3 ←Q3) ≠…≠(Ps ←Qs) ≠…
(2)  P1 ≠P2 ≠P3 ≠… ≠Ps ≠…
(3)  Q1 ≠Q2 ≠Q3 ≠… ≠Qs ≠…

Proof:  Self-evident from definitions 5.1 and 5.2. □

Lemma 5.5  The number Ps becomes the number in G4 of specific Ps + 1 by the g function.

Proof: It is obvious from Definitions 5.1 and 5.2 and Lemma 5.4 with reference to Supplementary Figure 5.6. □

[Supplementary Figure 5.6]

[image: ]


§6  No sequence and divergence in sequence C

[Reason why circulation does not occur in Collatz sequence C]

As shown in Supplementary Figure 5.6, the chain of the configuration diagram of the Ps set forms the sequence C. This is a very important Collatz sequence C structure.

From P1 to Ps, it is an odd number of No, all different from the definition. Here, let us assume that P0 is the same number as Ps, and that there is a circulation in the sequence C when P0 = Ps.

Assuming the above, the result of the function of g and f of P0 must be the same number as Ps + 1 (see Supplementary Figure 5.6). That is, P1 = Ps + 1. Ps are all different numbers, and similarly, even numbers of Qs do not have the same number.

It is clear that not all Ps is as∈G4 in the same set of Ps as itself, because the g function causes as∈G4 to exist in a particular Qs.

Ps becomes (Ps + 1 ← Qs + 1) by the g function. Further, according to the definitions 5.1 and 5.2 and the lemmas 5.4 and 5.5, if Ps is different, Qs is also different, so that P0≠Ps and P1 ≠Ps + 1.

Similarly, if P0 = Ps (s∈N),

　P1 =Ps+1
　P2 =Ps+2
　P3 =Ps+3
　…
　Ps =Ps+s
　Ps+1 =P2s+1
　Ps+2 =P2s+2
　Ps+3 =P2s+3
　…
It can be written as above.

Since the value of s is assumed to be P0 = Ps (s∈N), Ps itself does not exist in the actual circulation loop. It is shown that it travels a finite number up to s-1. Therefore, the actual circulation loop is formed by the circulation up to Ps-1.

P0 ⇒ P1　⇒ P2 ⇒ … ⇒ Ps－2 ⇒ Ps－1 ⇒ P0 .
At this time, there are s-1 functions g from the upper circulation loop P0 to the return to the original value. Therefore, the result conflicts with Lemma 5.4 and Supplementary Figure 5.6. In fact, s exists indefinitely.

And by definition, Qs does not have the same number, and similarly, Ps does not have the same number.

On the other hand, let's evaluate the circulation loop from another point of view. what if,
P0 ⇒ P1　⇒ P2 ⇒ … ⇒ Ps－2 ⇒ Ps－1 ⇒ P0
As we can write in the above form, pay attention to the increase and decrease by the operation of the functions g and f from P0 to return to the same original value. At that time, since the operations of the functions are both expressed as a product operation, the absolute values of the increase and decrease are equal from the assumption.

Since the function f is a decreasing function of a positive integer, when the inverse function f−1 is taken, the increment becomes equal to the increment of the function g.
　
Therefore, assuming that the number of operations of the function g before reaching the assumed cyclic loop “P0... P0” is “u” and the number of operations of the function f−1 is “v”, next equation holds,
u (3n + 1) = 2vm  (n is an odd product, m is an even product, u, v∈N).
So, if we transform the equation for n, 

n = －  (n is odd product, m is even product, u, v∈N).

From this equation, there are no numbers other than 1 in which the values of u and v are integer values.  There is no integer value that becomes 2 in the v root. It can be understood that the integer values of n, m, u, and v do not exist except when u = 1, v = 1, m = 2, and n = 1. Therefore, the assumption “P0 ⇒ P1 ⇒P2 ⇒ … ⇒ Ps-2 ⇒ Ps-1 ⇒ P0” does not hold. 

The fact that the sequence C does not diverge can also be proved from the fact that "the sequence C is constituted by the set of Ps".

That is, all the Ps are as+1 G4 existing in the specific Qs + 1 by the g function. As shown in Supplementary Figure 5.6, the operation that even Qs becomes Ps is repeated by the composite function of f.

At this time, the function f is repeated without passing through the Ps odd number of the “Ps set” and converges to 1 only when as∈G4 is 2k by the finite number of function operations.

Therefore, in order for the sequence C to diverge, it is a necessary condition that “2k is not included in Qs”. However, all the Qs generated by G2∪G4 contain 2k indefinitely from the result of Lemma 2.7.

Therefore, it must pass through 2k in the course of the finite number of function operations.
Is it possible to form a Collatz sequence C that does not pass through 2k at all?　If it can, it must show an infinite sequence that never passes through 2k. □

From the result of “m-column display” of G4 in §3, there is no identical number of G4 created by the function g. Since the Collatz sequence C is formed by the combination of the Ps sets, it can be proved that there is no divergence.



Reference materials

According to the following literature, this problem was confirmed by Derrick, Emma Lehmer, and J.L. Selfridge for numbers less than 109. Later, Professor Nobuo Yoneda reports that the value has been confirmed up to 1.2 × 1012.

Since the mathematician L. Collatz (1910-1990) in Germany predicted in 1937 and was supposed to have been raised earlier, he referred to the Collatz problem here.

"Unsolved Problem in Number Theory"  174p  By Richard Guy
  (C)1983 by Eastern Book Service,Inc. & Springer－Verlag Tokyo 
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